
1

nat PROCESS OVERVIEWTM

nat

Until now users faced with the challenge of migrating their
legacy Natural/Adabas applications to more modern
technologies have been stymied by the cost, time and
generally poor quality of manual translation. Often
replacement with a package application provides the only
effective solution but at the expense of the robust custom
functionality of their legacy applications.

The state-of-the-art JavNat migration tools are designed to
automate the conversion of legacy Natural applications to
Java. A powerful transformation engine implements an
efficient, high quality transition from a terminal based
Natural/Adabas environment to a multi-tier Java application
integrated with a modern relational database.

Natural source code is analyzed and parsed in detail and
the parsed output stored in an RDBMS based Syntax
Analysis Repository (SAR). All subsequent schema and
data migration, as well as source code conversion, is then
driven from the SAR database. The functionality of the
resulting Java/RDBMS application is identical to the original
Natural/Adabas application. The transformation strategy
also preserves the "look and feel" of the Natural application
while enabling continuing development in a modern web
oriented environment. The strict functional equivalence
approach with JavNat provides the additional benefit of
simplified testing and training.

The JavNat process is illustrated on Page 4 and includes:

Assessment of the application
RDBMS schema generation
Source code conversion
Data Migration
Performance Tuning and Customization

The JavNat process starts with the collection of all the Natural
source code from the customer's application portfolio,
including File Description Tables (FDTs) and Data Definition
Modules (DDMs), in Systrans format. This can be easily
accomplished using the Natural Systrans/Adarep utilities and
we will provide special instructions for source code collection.
As it is crucial that all source code be supplied, the focus
of preliminary processing is to identify any missing or
extraneous modules.

The Systrans file is transmitted to the JavNat processing
center where the FDTs, DDMs, Maps and all other Natural
source objects are parsed into Abstract Syntax Tree format.

Then the parsed data are extracted and loaded into SAR. For
each Natural module there is a corresponding entry in the
SAR database with its associated statements, data elements,
references, and all other information required to rebuild the
application preserving all of its functionality.

JavNat also provides tool-supported data migration from
Adabas production files to the Oracle tables. An automated
process combines data from SAR with the newly created
Oracle schema to enable the following:

Creation of an Oracle based data staging area derived from
the transformed Adabas schema.

Population of the staging area with data from the Adabas files
to facilitate subsequent data validation, data type mapping
and data warehousing activities. The Adabas data will be
extracted from data files produce using standard Adabas
utilities.

Generation of control files, based on the new Oracle schema,
that can be used to create SQLLDR files for bulk loading of
the Adabas data into the production Oracle tables.

The data migration process can be repeated as many times
as needed. Data migration will almost always require some
degree of data validation and mapping. JavNat can provide
automated support for activities such as:

Validation that a field specified as a date in Adabas and stored
as an A6 actually contains valid YYMMDD occurrences and
uses lo-values or blanks as a null value.

Validation of implied foreign key existence and constraint
checks.

Mapping an Adabas A6 date field to an Oracle date field with
blank occurrences replaced with NULL.

Mapping an Adabas SSN representation to an appropriate
Oracle representation.

Expansion or replacement of state, region or status codes.

Initially, an automated analysis of the parsed data is performed
to determine the feasibility of conversion, and to identify
problematic code (e.g.: dynamic code). Detailed assessment
reports are generated, containing a comprehensive description
of the source code and application details which aid in
estimating the size of the migration. The SAR database and
reports can also support application mining for migration
planning and the development of test scenarios.

Comprehensive inventory reports showing missing modules
ensure the completeness and integrity of the code prior to
conversion. During the assessment, any modules and/or DDMs
that are identified as unused will be purged from SAR database
before proceeding with subsequent processing stages.

JAVNAT - ENABLING THE FUTURE ASSESSMENT - Getting StartedDATA MIGRATION

ASSESSMENT - Analysis

Natural/Adabas to Java/RDBMS
MIGRATION TOOLSTMnat

All application platforms and databases have specific issues
when it comes to performance and customization. Particular
performance issues that appear during testing can be tuned
using a number of methods:

With the object-oriented nature of Java, cosmetic and
functional changes can be made to many of the JavNat
classes to customize the application where needed.
Customers are provided a complete set of source code to
allow for in-house customization or can contract for this service
on an as required basis. Customization methods might include:

DBAs can tune the new Oracle database as required using
techniques such as:

Adding or removing database indexes or may involve changes to the new
schema that requires an automated re-conversion of the application.

Changing the functionality of a particular JavNat I/O method for better
performance.

Adding new JavNat I/O methods to handle specific database access
situations.

Replacing JavNat methods with native Java JDBC calls where needed.

PERFORMANCE TUNING & CUSTOMIZATION

4

Assessment Reports

Source

Changing or adding JavNat methods to improve logic.

Replacing old Natural-like business logic with new object oriented business
rule concepts.

Re-coding sections in native Java statements.

Logic Performance

Database Performance

Customization

SAR
Repository

Load Parse

Natural Source

Analys is
Data Model l ing
Data Migrat ion

N

For More Informat ion Contact
Frank Dr iscol l

12 Beech Grove Gardens Stittsville ON K2S 1W5 Canada
fbdris1@attglobal.net Tel: (613) 836-7822 Fax: (613) 836-6894

Once the parsed data is loaded into SAR, the customer has
the option of specifying field and table names that will be
used in the creation of the new schema, as well as some
ability to change data types and sizes.

The JavNat default field and table names for FDTs are cryptic,
as they are built from the Adabas short names. However, the
customer has the option of overwriting table and field names
so that the new schema definition will be more meaningful to
application developers.

By default, the relational tables will be built from the
conversion details stored in SAR, according to the following
mapping rules:

Optionally, an MU field may be mapped to a partitioned text
field that contains all occurrences of the MU delimited by a
special character, or a separate field might be created to hold
each occurrence of the MU field. (e.g.: ADDRESS_LINE1,
ADDRESS_LINE2, etc.)

Each Superdescriptor (SP) and Subdescriptor (SB) is
converted to a physical field in the corresponding table in the
target database. A database trigger is created which maintains
the structure of the SP or SB components when these are
modified in the database. Under certain circumstances, SQL
can be used to copy the functionality of the SP/SB, eliminating
the need for a physical field.

Descriptors become indexes in the new schema.

Phonetic descriptors will be replaced by database triggers that
implement a Soundex algorithm.

Schema generation is an iterative process involving customer
review and input until a satisfactory schema is agreed upon.

Once customer approval is obtained, the data from SAR is
used to generate the CREATE TABLE, PRIMARY KEY and
FOREIGN KEY statements.

An example of a simple Adabas to RDBMS schema conversion
is illustrated below.

RDBMS SCHEMA GENERATION

2 3

Each FDT is converted to at least one corresponding relational
table in the target DBMS whose unique key will be the ISN of
the original Adabas record. This table will be comprised of all
the fields from the FDT with the exception of Periodic Groups
(PEs), Multiple Usage fields (MUs) and Group fields.

PEs are normalized, becoming Child tables with Foreign Keys
to the parent table.

Similarly, by default MUs are normalized, and Child Tables
created with Foreign Keys to the Parent Table.

The JavNat source code conversion strategy is based on
three key components as follows:

NatLogic Base Class: a series of custom Java methods that
implement the Java equivalent functionality of the Natural
language syntax. In general each Natural statement is
mapped to a Java method on a one to one basis. The JavNat
methods are designed to give the converted code a Natural
"look and feel."

Support Base Classes: a series of custom Java classes to
provide the Java equivalent functionality for certain Natural
runtime components and features. Some examples are:

NatSession - maintains and controls the JavNat runtime
environment.

NatSysVar - manages the system variables such as *DATX
and *COUNT.

NatStackItem - manages items passed on the stack

NatWorkFile - manages the disk I/O for the Natural
Read/Write Workfile statements

NatDDM - maps View structures to the Oracle schema.

Translation Engine: a SAR driven tool that converts each
Natural module source code, on a statement-by-statement
basis, to a functionally equivalent Java class using methods
of the NatLogic base class and native Java statements to
create Java logic that will execute exactly as it was executed
in the Natural environment. Each Natural source module is
converted to a Java class that extends the NatLogic base class.

The new Java classes corresponding to the Natural program
modules use the NatDDM base classes to generate SQL
statements that are executed through JDBC to the Oracle
schema. Logic is generated to read data from the Oracle
schema and store it back into the Natural view structure in the
same way that Natural functions. This applies to programs,
subprograms, helproutines, maps, LDAs PDAs and GDAs.
Within the support base classes there are methods defined to
handle each Natural system variable. These methods perform
the data manipulation necessary to obtain the required
results. For example, a method called sDATN will return the
system date in the format YYYYMMDD.

In the JavNat generated DML example below, note the use of
such methods as "NoRecordsFound", "Compress", and
"ReadPhysical", which will be familiar to Natural developers.

SOURCE CODE CONVERSION

The Local Data Area is translated
into Java. The result is very similar
to the Natural data definition. Note:
dEMPLOYEES is an extension of
the NatDDM base class.

Once declared as an instance of
dEMPLOYEES, all database actions
trigger the reading of corresponding
tables and transfer of the contents to
the defined data area. Updates will
read the contents of the defined
data area and will apply changes to
the appropriate tables of the
relational schema.

The Java method corresponding to
'Find' will accept a number of
optional parameters which translate
clauses such as WITH, WHERE,
SORTED BY, (LIMIT) etc.

The Natural COMPRESS statement
has many options. These are
handled by the parameters passed
to the Java Method "COMPRESS".

Adabas FDT RDBMS Tables

ADABAS FILE 001 DB: 188

LEVEL 1: Parent Table LEVEL 2: PE's and MU's LEVEL 3: MU's within PE

1 AA AA-FIELD A008 DE
1 AB AB-GROUP
2 AC AC-FIELD A020
2 AD AD-FIELD A020
2 AE AE-FIELD A020 DE
1 AG AG-FIELD U006 DE
1 A2 A2 GROUP

GR

ISN
AA_FIELD
AC_FIELD
AD_FIELD
AE_FIELD
AH_FIELD
AN_FIELD
AM_FIELD
AO_FIELD
AP_FIELD
S1_SUB
S2_SUB
S3_SUB

GR
GR
GR

1 S1 S1-SUB AO(1,4) DE
1 S2 S2-SUPER AO(1,5), AE(1,20) DE
1 S3 S3-SUPER AR(1,3), AS(1,9) DE

GR

1 AQ AQ-FIELD A003 DE

FILE_001_DB_188

MU

2 AN AN-FIELD A006
21 AM AM-FIELD A015

1 AR AR-GROUPPE
2 AS AS-FIELD U006
2 AT AT-FIELD U006

1 AV AV-GROUPPE

2 AY AY-FIELD P005MU

2 AW AW-FIELD A003
2 AX AX-FIELD P005

1 AO AO-FIELD A006 DE
1 AP AP-FIELD A025

FILE_001_DB_188_AQ

ISN
MU_SEQ
AQ_FIELD

FILE_001_DB_188_AR

ISN
PE_SEQ
AS_FIELD
AT_FIELD

FILE_001_DB_188_AV

ISN
PE_SEQ
AW_FIELD
AX_FIELD

FILE_001_DB_188_AV_AY

ISN
PE_SEQ
AY_FIELD
MU_SEQ

This shows the default
mapping. No overrides
have been entered for
field or table names,
PE's and MU's have all
been normalized.

MU within PE Group
AV becomes a
grandchild.

NATURAL CONVERTED JAVA
010
020
030
040
050
060
070
080
090
100
110
120
130
170
0 180 END-DEFINE

DEFINE DATA LOCAL
1 EMPLOYEES VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 FULL-NAME
 3 FIRST NAME
 3 NAME
 3 MIDDLE-NAME
 2 SEX
 2 FULL-ADDRESS
 3 ADDRESS-LINE (1:4)
 3 CITY
 3 POSTAL-CODE
 3 COUNTRY
1 #NAME (A40)

260
270
280
290
300

READ EMPLOYEES PHYSICAL
 REJECT IF CTY NE 'PERPIGNAN'
 WRITE
 1T NAME 30T PERSONNEL-ID
END-READ

900
950
970
980
010

FIND (5) EMPLOYEES WITH PERSONNEL-ID > 20
 REJECT IF SEX = 'M'
 ACCEPT IF COUNTRY = 'UK'
 COMPRESS FIRST-NAME NAME INTO #NAME
END-FIND

//Define Data

//End-Define

ReadPhysical ("EMPLOYEES");

Find(5,"EMPLOYEES","PERSONNEL_ID >20");

{ while (!EOF("EMPLOYEES"))
 if(Var("CITY") .ne("PERPIGNAN"))
 continue;
 Write (1,Var("NAME"));
 Write (9, Var(PERSONNEL-ID"));
 WriteRow (1);
 Next ("EMPLOYEES");}
Close("EMPLOYEES");

while(!EOF("EMPLOYEES"))

Close("EMPLOYEES");

{ if(VAR("SEX") .eq("M"))
 continue;
if(!VAR("COUNTRY") .eq("UK"))
 continue;
 Compress(false);
 Comp(Var("FIRST-NAME"));
 Comp(Var("NAME"));
 Intro(Var("#NAME"));
Next("EMPLOYEES"); }

Local() ;
View(1, "EMPLOYEES", new dEMPLOYEES());
Decl(2, "PERSONNEL-ID",'N',8);
Decl(2, "FULL-NAME",'G');
Decl(3,"FIRST-NAME",'A',20);
Decl(3,"NAME",'A',20);
Decl(3,"MIDDLE-NAME",'A',20);
Decl(2,"SEX",'A',1);
Decl(2,"FULL-ADDRESS");
Decl(3,"ADDRESS-LINE",'A',20,1,4);
Decl(3,"CITY,'A',20);
Decl(3,"POSTAL-CODE",'A',10);
Decl(3,"COUNTRY",'A',3);
Decl(1,"#NAME",'A',40);Natural "Look and Feel"

Business Logic Unchanged

Easy to Maintain!

Once the parsed data is loaded into SAR, the customer has
the option of specifying field and table names that will be
used in the creation of the new schema, as well as some
ability to change data types and sizes.

The JavNat default field and table names for FDTs are cryptic,
as they are built from the Adabas short names. However, the
customer has the option of overwriting table and field names
so that the new schema definition will be more meaningful to
application developers.

By default, the relational tables will be built from the
conversion details stored in SAR, according to the following
mapping rules:

Optionally, an MU field may be mapped to a partitioned text
field that contains all occurrences of the MU delimited by a
special character, or a separate field might be created to hold
each occurrence of the MU field. (e.g.: ADDRESS_LINE1,
ADDRESS_LINE2, etc.)

Each Superdescriptor (SP) and Subdescriptor (SB) is
converted to a physical field in the corresponding table in the
target database. A database trigger is created which maintains
the structure of the SP or SB components when these are
modified in the database. Under certain circumstances, SQL
can be used to copy the functionality of the SP/SB, eliminating
the need for a physical field.

Descriptors become indexes in the new schema.

Phonetic descriptors will be replaced by database triggers that
implement a Soundex algorithm.

Schema generation is an iterative process involving customer
review and input until a satisfactory schema is agreed upon.

Once customer approval is obtained, the data from SAR is
used to generate the CREATE TABLE, PRIMARY KEY and
FOREIGN KEY statements.

An example of a simple Adabas to Oracle schema conversion
is illustrated below.

ORACLE SCHEMA GENERATION

2 3

Each FDT is converted to at least one corresponding relational
table in the target DBMS whose unique key will be the ISN of
the original Adabas record. This table will be comprised of all
the fields from the FDT with the exception of Periodic Groups
(PEs), Multiple Usage fields (MUs) and Group fields.

PEs are normalized, becoming Child tables with Foreign Keys
to the parent table.

Similarly, by default MUs are normalized, and Child Tables
created with Foreign Keys to the Parent Table.

The JavNat source code conversion strategy is based on
three key components as follows:

NatLogic Base Class: a series of custom Java methods that
implement the Java equivalent functionality of the Natural
language syntax. In general each Natural statement is
mapped to a Java method on a one to one basis. The JavNat
methods are designed to give the converted code a Natural
"look and feel."

Support Base Classes: a series of custom Java classes to
provide the Java equivalent functionality for certain Natural
runtime components and features. Some examples are:

NatSession - maintains and controls the JavNat runtime
environment.

NatSysVar - manages the system variables such as *DATX
and *COUNT.

NatStackItem - manages items passed on the stack

NatWorkFile - manages the disk I/O for the Natural
Read/Write Workfile statements

NatDDM - maps View structures to the RDBMS schema.

Translation Engine: a SAR driven tool that converts each
Natural module source code, on a statement-by-statement
basis, to a functionally equivalent Java class using methods
of the NatLogic base class and native Java statements to
create Java logic that will execute exactly as it was executed
in the Natural environment. Each Natural source module is
converted to a Java class that extends the NatLogic base class.

The new Java classes corresponding to the Natural program
modules use the NatDDM base classes to generate SQL
statements that are executed through JDBC to the RDBMS
schema. Logic is generated to read data from the RDBMS
schema and store it back into the Natural view structure in the
same way that Natural functions. This applies to programs,
subprograms, helproutines, maps, LDAs PDAs and GDAs.
Within the support base classes there are methods defined to
handle each Natural system variable. These methods perform
the data manipulation necessary to obtain the required
results. For example, a method called sDATN will return the
system date in the format YYYYMMDD.

In the JavNat generated DML example below, note the use of
such methods as "NoRecordsFound", "Compress", and
"ReadPhysical", which will be familiar to Natural developers.

SOURCE CODE CONVERSION

The Local Data Area is translated
into Java. The result is very similar
to the Natural data definition. Note:
dEMPLOYEES is an extension of
the NatDDM base class.

Once declared as an instance of
dEMPLOYEES, all database actions
trigger the reading of corresponding
tables and transfer of the contents to
the defined data area. Updates will
read the contents of the defined
data area and will apply changes to
the appropriate tables of the
relational schema.

The Java method corresponding to
'Find' will accept a number of
optional parameters which translate
clauses such as WITH, WHERE,
SORTED BY, (LIMIT) etc.

The Natural COMPRESS statement
has many options. These are
handled by the parameters passed
to the Java Method "COMPRESS".

Adabas FDT Oracle Tables

ADABAS FILE 001 DB: 188

LEVEL 1: Parent Table LEVEL 2: PE's and MU's LEVEL 3: MU's within PE

1 AA AA-FIELD A008 DE
1 AB AB-GROUP
2 AC AC-FIELD A020
2 AD AD-FIELD A020
2 AE AE-FIELD A020 DE
1 AG AG-FIELD U006 DE
1 A2 A2 GROUP

GR

ISN
AA_FIELD
AC_FIELD
AD_FIELD
AE_FIELD
AH_FIELD
AN_FIELD
AM_FIELD
AO_FIELD
AP_FIELD
S1_SUB
S2_SUB
S3_SUB

GR
GR
GR

1 S1 S1-SUB AO(1,4) DE
1 S2 S2-SUPER AO(1,5), AE(1,20) DE
1 S3 S3-SUPER AR(1,3), AS(1,9) DE

GR

1 AQ AQ-FIELD A003 DE

FILE_001_DB_188

MU

2 AN AN-FIELD A006
21 AM AM-FIELD A015

1 AR AR-GROUPPE
2 AS AS-FIELD U006
2 AT AT-FIELD U006

1 AV AV-GROUPPE

2 AY AY-FIELD P005MU

2 AW AW-FIELD A003
2 AX AX-FIELD P005

1 AO AO-FIELD A006 DE
1 AP AP-FIELD A025

FILE_001_DB_188_AQ

ISN
MU_SEQ
AQ_FIELD

FILE_001_DB_188_AR

ISN
PE_SEQ
AS_FIELD
AT_FIELD

FILE_001_DB_188_AV

ISN
PE_SEQ
AW_FIELD
AX_FIELD

FILE_001_DB_188_AV_AY

ISN
PE_SEQ
AY_FIELD
MU_SEQ

This shows the default
mapping. No overrides
have been entered for
field or table names,
PE's and MU's have all
been normalized.

MU within PE Group
AV becomes a
grandchild.

NATURAL CONVERTED JAVA
010
020
030
040
050
060
070
080
090
100
110
120
130
170
0 180 END-DEFINE

DEFINE DATA LOCAL
1 EMPLOYEES VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 FULL-NAME
 3 FIRST NAME
 3 NAME
 3 MIDDLE-NAME
 2 SEX
 2 FULL-ADDRESS
 3 ADDRESS-LINE (1:4)
 3 CITY
 3 POSTAL-CODE
 3 COUNTRY
1 #NAME (A40)

260
270
280
290
300

READ EMPLOYEES PHYSICAL
 REJECT IF CTY NE 'PERPIGNAN'
 WRITE
 1T NAME 30T PERSONNEL-ID
END-READ

900
950
970
980
010

FIND (5) EMPLOYEES WITH PERSONNEL-ID > 20
 REJECT IF SEX = 'M'
 ACCEPT IF COUNTRY = 'UK'
 COMPRESS FIRST-NAME NAME INTO #NAME
END-FIND

//Define Data

//End-Define

ReadPhysical ("EMPLOYEES");

Find(5,"EMPLOYEES","PERSONNEL_ID >20");

{ while (!EOF("EMPLOYEES"))
 if(Var("CITY") .ne("PERPIGNAN"))
 continue;
 Write (1,Var("NAME"));
 Write (9, Var(PERSONNEL-ID"));
 WriteRow (1);
 Next ("EMPLOYEES");}
Close("EMPLOYEES");

while(!EOF("EMPLOYEES"))

Close("EMPLOYEES");

{ if(VAR("SEX") .eq("M"))
 continue;
if(!VAR("COUNTRY") .eq("UK"))
 continue;
 Compress(false);
 Comp(Var("FIRST-NAME"));
 Comp(Var("NAME"));
 Intro(Var("#NAME"));
Next("EMPLOYEES"); }

Local() ;
View(1, "EMPLOYEES", new dEMPLOYEES());
Decl(2, "PERSONNEL-ID",'N',8);
Decl(2, "FULL-NAME",'G');
Decl(3,"FIRST-NAME",'A',20);
Decl(3,"NAME",'A',20);
Decl(3,"MIDDLE-NAME",'A',20);
Decl(2,"SEX",'A',1);
Decl(2,"FULL-ADDRESS");
Decl(3,"ADDRESS-LINE",'A',20,1,4);
Decl(3,"CITY,'A',20);
Decl(3,"POSTAL-CODE",'A',10);
Decl(3,"COUNTRY",'A',3);
Decl(1,"#NAME",'A',40);Natural "Look and Feel"

Business Logic Unchanged

Easy to Maintain!

1

nat PROCESS OVERVIEWTM

nat

Until now users faced with the challenge of migrating their
legacy Natural/Adabas applications to more modern
technologies have been stymied by the cost, time and
generally poor quality of manual translation. Often
replacement with a package application provides the only
effective solution but at the expense of the robust custom
functionality of their legacy applications.

The state-of-the-art JavNat migration tools are designed to
automate the conversion of legacy Natural applications to
Java. A powerful transformation engine implements an
efficient, high quality transition from a terminal based
Natural/Adabas environment to a multi-tier Java application
integrated with a modern Oracle relational database.

Natural source code is analyzed and parsed in detail and
the parsed output stored in an Oracle based Syntax
Analysis Repository (SAR). All subsequent schema and
data migration, as well as source code conversion, is then
driven from the SAR database. The functionality of the
resulting Java/Oracle application is identical to the original
Natural/Adabas application. The transformation strategy
also preserves the "look and feel" of the Natural application
while enabling continuing development in a modern web
oriented environment. The strict functional equivalence
approach with JavNat provides the additional benefit of
simplified testing and training.

The JavNat process is illustrated on Page 4 and includes:

Assessment of the application
Oracle schema generation
Source code conversion
Data Migration
Performance Tuning and Customization

The JavNat process starts with the collection of all the Natural
source code from the customer's application portfolio,
including File Description Tables (FDTs) and Data Definition
Modules (DDMs), in Systrans format. This can be easily
accomplished using the Natural Systrans/Adarep utilities and
we will provide special instructions for source code collection.
As it is crucial that all source code be supplied, the focus
of preliminary processing is to identify any missing or
extraneous modules.

The Systrans file is transmitted to the JavNat processing
center where the FDTs, DDMs, Maps and all other Natural
source objects are parsed into Abstract Syntax Tree format.

Then the parsed data are extracted and loaded into SAR. For
each Natural module there is a corresponding entry in the
SAR database with its associated statements, data elements,
references, and all other information required to rebuild the
application preserving all of its functionality.

JavNat also provides tool-supported data migration from
Adabas production files to the RDBMS tables. An automated
process combines data from SAR with the newly created
RDBMS schema to enable the following:

Creation of an RDBMS based data staging area derived from
the transformed Adabas schema.

Population of the staging area with data from the Adabas files
to facilitate subsequent data validation, data type mapping
and data warehousing activities. The Adabas data will be
extracted from data files produce using standard Adabas
utilities.

Generation of control files, based on the new RDBMS schema,
that can be used to create SQL load files for bulk loading of
the Adabas data into the production RDBMS tables.

The data migration process can be repeated as many times
as needed. Data migration will almost always require some
degree of data validation and mapping. JavNat can provide
automated support for activities such as:

Validation that a field specified as a date in Adabas and stored
as an A6 actually contains valid YYMMDD occurrences and
uses lo-values or blanks as a null value.

Validation of implied foreign key existence and constraint
checks.

Mapping an Adabas A6 date field to an RDBMS date field with
blank occurrences replaced with NULL.

Mapping an Adabas SSN representation to an appropriate
RDBMS representation.

Expansion or replacement of state, region or status codes.

Initially, an automated analysis of the parsed data is performed
to determine the feasibility of conversion, and to identify
problematic code (e.g.: dynamic code). Detailed assessment
reports are generated, containing a comprehensive description
of the source code and application details which aid in
estimating the size of the migration. The SAR database and
reports can also support application mining for migration
planning and the development of test scenarios.

Comprehensive inventory reports showing missing modules
ensure the completeness and integrity of the code prior to
conversion. During the assessment, any modules and/or DDMs
that are identified as unused will be purged from SAR database
before proceeding with subsequent processing stages.

JAVNAT - ENABLING THE FUTURE ASSESSMENT - Getting StartedDATA MIGRATION

ASSESSMENT - Analysis

Natural/Adabas to Java/Oracle
MIGRATION TOOLSTMnat

All application platforms and databases have specific issues
when it comes to performance and customization. Particular
performance issues that appear during testing can be tuned
using a number of methods:

With the object-oriented nature of Java, cosmetic and
functional changes can be made to many of the JavNat
classes to customize the application where needed.
Customers are provided a complete set of source code to
allow for in-house customization or can contract for this service
on an as required basis. Customization methods might include:

DBAs can tune the new RDBMS as required using techniques
such as:

Adding or removing database indexes.

Changing the functionality of a particular JavNat I/O method for better
performance.

Adding new JavNat I/O methods to handle specific database access
situations.

Replacing JavNat methods with native Java JDBC calls where needed.

PERFORMANCE TUNING & CUSTOMIZATION

4

Assessment Reports

Source

Changing or adding JavNat methods to improve logic.

Replacing old Natural-like business logic with new object oriented business
rule concepts.

Re-coding sections in native Java statements.

Logic Performance

Database Performance

Customization

SAR
Repository

Load Parse

Natural Source

Analys is
Data Model l ing
Data Migrat ion

N

For More Informat ion Contact
Frank Dr iscol l

White Rock, British Columbia V4B 1L9
fbdris1@attblobal.net Tel: (604) 538-5094

 For More Information Contact:

 Frank Driscoll
 Em: frankd@fdba.ca
 Ph: 604-765-4870

