
© Copyright IBM Corporation 2014. All rights reserved.
The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing
contained in these materials is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or
licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these
materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product
release dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities
or other factors, and are not intended to be a commitment to future product or feature availability in any way. IBM, the IBM logo, the on-
demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business
Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service
marks of others.

© 2014 FBD Associates Inc. Copying or distribution of this report is not permitted without the prior written consent of and FBD Associates
Inc.

FBD Associates Inc.

ENABLING THE FUTURE

Natural / Adabas

Migration Solutions

RMEn - Nat2EGL Process Guide

October, 2014

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 2

Table of Contents
1 Objective .. 3

2 Collection of Customer Source Code ... 4

3 SYSTRANS Analysis ... 4

4 Parsing and Analysis ... 4

5 Partitioning ... 7

6 Normalization ... 7

6.1 Automated Normalization ... 7

6.2 Client Input to Conversion Relational Files .. 8

6.3 ADAULD Extraction .. 9

7 Source Code Conversion ... 10

7.1 Automated conversion to EGL ... 10
7.1.1 Artifacts created in conversion ... 10

7.2 Manual Remediation .. 11

8 Data Migration ... 11

9 Application Testing .. 12
9.1.1 Unit test environment .. 13
9.1.2 Acceptance test environment .. 13

9.2 Data Conversion .. 14

9.3 Parallel testing ... 14
9.3.1 Macro level .. 14
9.3.2 Micro level .. 14

9.4 Multi-user testing .. 15

9.5 Problem reporting .. 15

10 Appendix A: Sample of converted EGL code .. 16

11 Appendix B: Sample User Acceptance test script ... 18

12 Appendix C: Relational Mapping File ... 19

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 3

1 Objective

This document is intended to provide an understanding of the step-by-step process for migration of a
Natural/ADABAS application to a functionally equivalent EGL/DB2 or EGL/Oracle based
application using the IBM Rational Software Development Platform and FBD Associates Inc. (FBDA)
RMEn-Nat2EGL migration tools. These steps are illustrated in Figure 1 and from the beginning to
the completion of the process are:

 Collection of Natural source code and Adabas FDTs

 Natural source code parsing

 Loading the parsed data to a repository

 Analysis and assessment

 Application partitioning

 Adabas FDT normalization and DB2/Oracle relational schema generation

 Conversion of Natural source code to EGL

 Adabas data conversion and migration

 Testing and user acceptance

Figure 1 RMEn-Nat2EGL Process

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 4

2 Collection of Customer Source Code

The process begins with the collection of all the Natural source code from the customer's application
portfolio in SYSTRANS format. The SYSTRANS must include the Adabas Field Definition Tables
(FDTs) as well as the Natural Data Definition Modules (DDMs), Maps, Data Definition Areas (global,
local and parameter data areas), and executable modules (programs, subprograms, subroutines,
helproutines). This can be accomplished using the Software AG ADAREP and SYSTRANS utilities.

To assist in this activity, IBM Rational and FBDA will provide special instructions for source code
collection. For details regarding the collection of source code contact IBM Rational.

The SYSTRANS files can be emailed or ftp’d to IBM Rational/FBDA for parsing. Where STEPLIBS are
used, the STEPLIB information must be provided.

3 SYSTRANS Analysis

Written in Java and using Apache Derby (an open source relational database), the Systrans Auditor
reads the SYSTRANS files provided by a customer and produces a series of reports showing basic
application statistics (module and line counts) for the application as well as reports that:

a) identify missing Natural modules and indicate where they are called from

b) suggest STEPLIBS that may serve to eliminate some of the missing Natural modules

c) identify certain modules which, though missing, can be ignored (for example, modules that are
confirmed by the customer to be irrelevant, Construct support modules, or SAG USR* modules)

d) identify 3GL calls and the modules which call them

The use of the SYSTRANS Auditor assists with the missing modules analysis and ensures that the
code base is complete prior to the more labor and processing intensive parsing and analysis
activities.

The document “Instructions for SYSTRANS Auditor” provides additional technical and operational
details about the SYSTRANS Auditor and is available upon request.

4 Parsing and Analysis

The FDTs, DDMs, Maps and other Natural objects from the SYSTRANS are parsed, and the parsed
data extracted and loaded into the relational based Syntax Analysis Repository (SAR). Initially, an
automated analysis of the parsed data is performed using SNAP® to determine the feasibility of
conversion and identify problematic code (e.g.: dynamic code, external calls). Detailed application
profile assessment reports (see below) are generated, containing a comprehensive description of the
source code and application details which aid in estimating the size of the migration.

SNAP® is an interactive web-based tool that reads the SAR database and allows the user to perform
a number of functions to support application conversion and data migration.

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 5

Using SNAP® one can:

 View statistics

 Normalize Adabas FDTs based on DDMs

 Create the DDL for schema definition, the control file and SQL for database triggers

 Read Adabas data files (ADAULD) and produce files for relational database loading

 Manage partitioning of applications (and libraries) in preparation for conversion

 View EGL conversion reports post-conversion to assess the remediation effort

 View and/or download Natminer® DNA Reports

NatMiner® DNA Reports provides comprehensive inventory reports that ensure the completeness
and integrity of the code prior to conversion. During the assessment, any modules and/or DDMs
that are identified as unused will be purged from SAR database before proceeding with subsequent
processing stages.

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 6

Using Natminer® you can:

 View Application Profile Reports including general information such as:

 application metrics
 modules not parsed
 missing objects (executables, ddm, data areas, copy code)
 un-referenced subroutines
 dynamic calls

 View reports showing potential conversion issues

 View source code in HTML format

SNAP® and NatMiner® provide a convenient way to view the parsed and converted applications,
perform the database normalization, and a good basis for planning all phases of the project.

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 7

5 Partitioning

Using SNAP® together with the Natural source code and any available documentation, the
application is analyzed and organized into logical units of work (partitions) that will be tested and
delivered incrementally consistent with customer test and production support resource availability.
Partitions will be determined for the most part by functions within the application. Several functions
that are made up of only a few modules may be combined into one partition while other, more
complex functions may be split over more than one partition.

Partitions are designed to follow the normal business procedures. For example, security and support
file maintenance would be likely candidates for the first partition. Subsequent partitions would then
use and build on the files already created and populated.

While it is not essential, it is highly desirable that the customer be involved in partitioning from the
beginning. The proposed plan will be reviewed, amended as required and ultimately approved by the
customer before work begins.

The source code translation will be implemented in phases with each phase consisting of one or
more of these partitions. As the source code for each partition is translated it will be compiled and
subject to unit level test to confirm functional performance.

6 Normalization

6.1 Automated Normalization

The Parsing and Analysis phase of the NAT2EGL process ensures completeness of the client’s code.
The next phase is normalization of the FDTs to create a relational schema. The generation of the
DDL is done together with the source conversion. The DB2/Oracle database schema is derived from
the ADABAS File Definition Tables (FDTs) using the ADABAS FDT Normalization tools. Customers
provide ADABAS data as an ADAULD (ADA Unload) file. ADAULD is a standard utility available to
ADABAS users for unloading all data for a given FDT.

The relational tables (DB2/Oracle) will be built from the conversion details stored in SAR, according
to the following mapping rules:

 Each FDT is converted to at least one corresponding relational table in the target DBMS
whose unique key will be the ISN of the original Adabas record. This table will be comprised
of all the fields from the FDT with the exception of Periodic Groups (PEs), Multiple Usage
fields (MUs) and Group fields.

 PEs are normalized, becoming Child tables with Foreign Keys to the parent table.

 Similarly, MUs are normalized, and Child Tables created with Foreign Keys to the Parent
Table. Optionally, an MU field may be mapped to a partitioned text field that contains all
occurrences of the MU delimited by a special character, or a separate field may be created
to hold each occurrence of the MU field. (e.g.: ADDRESS_LINE1, ADDRESS_LINE2, etc.)

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 8

 Each Superdescriptor (SP) and Subdescriptor (SB) is converted to a physical field in the
corresponding table in the target database. A database trigger is created which maintains
the structure of the SP or SB components when these are modified in the database.

 Descriptors become indexes in the new schema.

 Phonetic descriptors will be replaced by database triggers that implement a Soundex
algorithm.

Schema generation is an iterative process involving customer review and input until a satisfactory
schema is agreed upon.

At this point, DDL is generated, including:

 CREATE TABLE, PRIMARY KEY and FOREIGN KEY statements

 CREATE INDEX statements

 Stored procedures to manage sub/superdescriptor triggers

 ISNs are created as identity columns

Additionally, the migration tool generates:

 Relational Mapping files (RMF) needed for the data extraction process

 DB2/Oracle Load commands that correspond to the new relational schema

6.2 Client Input to Conversion Relational Files

The customer has the option of specifying field and table names and some ability to change data
types and sizes that will be used in the creation of the new schema. While changes may be provided
in a number of formats (e.g. Excel, CSV, etc) they are entered into SAR using SNAP®.

The Nat2EGL default field and table names for FDTs are cryptic, as they are built from the Adabas
short names. However, the customer has the option of overwriting table and field names so that the
new schema definition will be more meaningful to application developers.

When normalizing an FDT, the DDM fields are presented side by side with the FDT information in
SNAP®, and can be used as a default for the new name. In the example below, there is only one
DDM for the FDT.

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 9

A person with a passing knowledge of Natural/ADABAS would have no difficulty in interpreting the
above fields.

When the steps have been completed and the file normalized satisfactorily, clicking on Generate
Oracle Schema in the left pane will complete the process, creating among other things, a Relational
Mapping file (RMF) needed for the data extraction process.

6.3 ADAULD Extraction

In this process, an ADAULD file in binary format is read together with the relational mapping file
(RMF), and the ADAULD data is then mapped to the table and field definitions that were created
during the normalization process. The extraction produces a flat file containing the converted data in
a format which can be loaded into the new DB2/Oracle schema using the DB2/Oracle load
commands created during migration process.

The extraction process also creates a set of batch files that allows for quick and easy execution of the
DB2/Oracle load commands created during migration.

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 10

7 Source Code Conversion

7.1 Automated conversion to EGL

Upon completion of database normalization, the source code can be converted. To ensure the
generation of the correct DML it is essential that the FDT normalization details be stored in the SAR
before proceeding.

The Nat2EGL source code conversion reads the SAR database and produces EGL equivalent code.
Nat2EGL comments are inserted where applicable, and are of three types:

 M (Message) is strictly for your information and requires no action

 R (Requires review) indicates that the generated code should be reviewed to ensure that it will
function correctly, and appropriate remedial action taken if required

 W (Warning) indicates that some additional action will be required – generally a new
statement not yet handled in the converter

Please refer to Appendix A for a side-by-side comparison of a sample Natural/ EGL program.

7.1.1 Artifacts created in conversion

Many of the artifacts produced during conversion are independent of the environment (i.e. Batch
Versus Online). Others are unique to online.

For both Batch and Online, the following EGL packages are created, each in a separate directory:

DDM (Batch and Online)

For each Natural DDM an object of type ‘sqlRecord’ is created in EGL. The converted view objects are
placed in a directory called ‘ddm’. This is imported into EGL as a package that is referenced by
modules that have database access.

Library (Batch and Online)

For each Natural module of type (Program, Subprogram, Subroutine, Map, Helproutine, GDA, PDA,
LDA) an object is created in EGL. These objects are placed in a directory named for the Natural
library of origin. Together these packages which correspond to Natural Libraries comprise the main
package in EGL.

 Executable objects (programs, subprograms, subroutines, helproutines) become EGL ‘called’
programs.

 For Batch, these have a type ‘basicProgram()’

 For Online, i.e. modules that have a converse, type is ‘UIProgram()’

 For each Map an EGL handler is generated of type ‘basicHandler’

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 11

 Global Data Areas (GDA) become EGL objects of type ‘Library’.

 Other Data Definition Areas (PDA, LDA) become EGL objects of type ‘basicRecord’.

Additional library packages for Maps (Online only)

In addition to the basicHandlers mentioned above, for each Map or Input (from a screen) statement
the following related objects are created in 2 separate packages:

 an EGL handler of type ‘RUIHandler’

 a data record of type ‘basicRecord’

Nat2Egl_Support_Lib (Batch and Online)

A project called ‘Nat2Egl_Support_Lib’ is also supplied. This package contains EGL source objects
that are created by FBDA to provide functionality similar to Natural. Some examples are the code
that handles PF key assignment, support for Natural Stack commands and certain statements such
as Examine. This support library must be included on the EGL build path in order for the converted
code to compile.

The Nat2Egl_Support_lib is environment-independent except for a couple of libraries and functions
that must be included for online (RUI) deployment and which are commented out for COBOL
deployment.

7.2 Manual Remediation

A limited number of manual remediations (e.g. REINPUT statement, certain date/time
manipulations) are required to the converted code to ensure a successful compilation and
functioning of these statements.

The converted EGL versions of maps, ddms and data areas compile with no further changes.

8 Data Migration

Nat2EGL also provides tool-supported data migration from Adabas production files to the relational
tables. An automated process that can be managed using ADABAS Normalization tool or
independently, combines data from SAR with the newly created relational schema to enable the
following:

 Creation of a relational based data staging area derived from the transformed Adabas schema.

 Population of the staging area with data from the Adabas files to facilitate subsequent data

validation, data type mapping and data warehousing activities. The Adabas data will be
extracted from data files produce using standard Adabas utilities.

 Generation of control files based on the new relational schema, that can be used to create files

for bulk loading of the Adabas data into the production relational tables.

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 12

The data migration process can be repeated as many times as needed. Data migration will almost
always require some degree of data validation and mapping.

Refer to Appendices C and D for further details.

Performance

All application platforms and databases have specific issues when it comes to performance and
customization. Once customers have received the EGL source code, they may do in-house
customization or they can contract for this service on an as required basis. Particular performance
issues that may be identified during testing can be tuned in the following ways:

 DBAs can tune the new relational database using such techniques as adding or removing

database indexes or possibly making changes to the new schema that requires an automated re-
conversion of the application.

 Changing the DML for better performance.

Logic Performance

9 Application Testing

The Nat2EGL conversion process is based on a statement to statement conversion approach. As a
consequence there is a one-to-one correspondence between converted EGL code and the Natural
application. The logic and business rules are identical to the original application, and the user
interface has the same appearance unless it has been customized at the user’s request.

The Nat2EGL conversion process simplifies testing in that testing can be done in parallel with the
existing application using a Natural test environment. Existing test scripts can be applied without
change. Database updates and reports can be compared to ensure that the converted application is
functioning as required.

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 13

The screen image shown below is from an EGL application. It illustrates the similarity to a Natural
3270 screen map.

It is recommended that 2 environments be set up for testing in both the EGL and the Natural
environment as follows:

9.1.1 Unit test environment

The purpose of Unit test is to ensure that each screen and module, in isolation, compiles and
operates with a reasonable behaviour. Ensuring functionally sound application behaviour is not the
purpose of this phase of testing. Testing in this phase is not closely controlled, but includes the unit
test issues of field data extremes, PF key operation, error message generation, and no abends of
code.

9.1.2 Acceptance test environment

This environment will be strictly controlled and testing will follow scripts which take the user
through a logical cycle(s) of processing including both batch and online. Where ‘parallel’ testing is
discussed below it is with this environment in mind.

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 14

See Appendix B for a sample test script.

9.2 Data Conversion

Verification of the data conversion is accomplished by way of an automated comparison between the
converted relational tables and the original data.

The client will provide a flat file dump of the data prior to conversion. To avoid the possibility of
interim change, this should accompany the ADAULD when it is provided for testing. A dump of the
converted data in the same format would be obtained using IBM Rational/FBDA tools. These two
files can then be compared using standard ‘diff’ software and the results reviewed.

9.3 Parallel testing

The ADABAS data supplied for testing is loaded into a Natural test environment. The converted data
is loaded into relational tables. Using 2 terminals (or 2 screens on the same terminal) users perform
the same functions in both systems and compare screens. For parallel testing it is essential that
scripts be prepared and followed rigorously.

These tests will follow the process from beginning to end, including such things as rollover, month
end, year end and any other process cycles, batch reports and any external interfaces there may be.
Parallel testing will use client scripts where available, plus additional tests to exercise every part of
the system.

Verification should be done through a regular comparison of:

 database contents

 printed outputs (reports)

 output (work) files produced

9.3.1 Macro level

Upon completion of testing a business cycle (e.g. day, month, transaction, or other business process
unit), the data comparison will be done between the ADABAS and relational files and any other
outputs produced.

9.3.2 Micro level

Note will be taken of every field that appears on a screen. For example, attention should be given to:

 date and time formats

 negative numbers

 specials editing of fields (edit masks such as ‘XXX’-‘XX’-‘XXX’)

 leading zeros

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 15

 trailing blanks

 decimal places

 upper/lower case

 functioning of all PF keys

 error messages

 position of cursor on entering screen

 position of cursor when validation error occurs

9.4 Multi-user testing

It is desirable upon completion of a first pass of unit and system testing, to subject the application to
a multiple-users test. As early as possible, testing that involves two or more simultaneous users
would be performed. This type of testing will be scheduled as partitions are rolled out, not deferred
until the project is completed.

9.5 Problem reporting

Problem reporting and resolution is a process that will enable the client and other interested parties
to be fully informed on a regular and on agreed frequency basis regarding the progress of code
conversion.

Problems may be of types:

i) different behaviour from the existing Natural application

ii) same behaviour as the existing Natural application, but is deemed that the existing Natural

application contains a problem

Each problem will be fully described and assigned a priority and severity.

Each problem of type (i) is the responsibility of IBM Rational/FBDA to respond with:

• An estimate of the timeframe to address the problem

• A resolution to the problem

Each problem of type (ii) will be addressed in association with the client to respond with:

• A resolution to the problem

• An estimate of the timeframe to address the problem

• A change request (CR) order to fix the problem

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 16

10 Appendix A: Sample of converted EGL code

Natural: PROGRAM ‘SAMPLE’

LIBRARY = ‘FBDALIB’

EGL Equivalent

**
** FBDA001 This program reads…
**

DEFINE DATA
**
** Global data area
**
GLOBAL USING FBGDA01
**
** Local data
**
LOCAL
**
1 LOC VIEW OF LOCATION
 2 LOCATION-CODE (A6)
 2 DESCRIPTION (A20)
**
1 #DESCRIPTION (A20)
END-DEFINE
** Program logic
**

PERFORM INIT-FIELDS
PERFORM GET-RECORDS
**
** Subroutines
**
DEFINE SUBROUTINE INIT-FIELDS
MOVE ‘OTT’ TO FBGDA01.##LOC-CODE
END-SUBROUTINE
**
DEFINE SUBROUTINE GET-RECORDS
FIND LOC WITH LOCATION-CODE
 = FBGDA01.##LOC-CODE
 MOVE DESCRIPTION TO #DESCRIPTION
END-FIND
END-SUBROUTINE
**
END

package fbda.test.fbdalib;
import ca.fbda.Nat2EGL.*;
import com.sync.tx3.egl.srv.UIProgramGatewayLib;
import com.sync.tx3.egl.srv.GatewayContext;
import fbda.test.uirecords.*;
import fbda.test.ddm.*;
//*************************************
//
// Fbda001 This program reads…
//
//*************************************
Program sample type basicProgram ()
{ throwNrfEofExceptions = no, TextLiteralDefaultString = no }

 // Program Variables
 local Sample_ws;

 // GDA
 use Fbgda01;

 // view references
 use Location_Adabas_Library;
 location Location;

// Program Entry Point
 function main()
 mainLogic();
 end

 Function mainLogic()
 initFields();
 getRecords();
 end //mainLogic
//
// Subroutines
//
Function initFields()
 Fbgda01.$$loc_code = "OTT";
end //initFields
//
Function getRecords ()
 open rs_location for location into
 local.location.location_Code,
 local.location.description
 with #sql
 {
 select LOCATION_CODE,DESCRIPTION
 from LOCATION
 where LOCATION_CODE =:Fbgda01.$$loc_code
 };
 // Find Loop
 while (location not noRecordFound)
 get next location from rs_location;
 if(location not noRecordFound)
 location _Var.sCounter = location _Var.sCounter + 1;
 move location to local. location byName;

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 17

 else
 exit while;
 end
 local.$description = local.location.description;
 end //while (Find)
 //
end //getRecords
end //Program

// Working Storage Record
record Sample_ws type basicRecord
 10 loc; //LOCATION
 20 location_Code CHAR(6);
 20 description CHAR(20);
//
 10 $description CHAR(20);

end

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 18

11 Appendix B: Sample User Acceptance test script

Section 1: General Information

Primary User’s Name: John Doe Test Case ID #:
User’s Extension #: 123-4567 Tester’s Name:
Origin: Payroll

Other
New Script
Addendum to: #_____________
Related to: #_____________

Action to be Tested: Entry of extra time for principal. Original Test Date: / /
Department Name: Retest (1) Date: / /
Department ID: Retest (2) Date: / /
 Test Priority  Show-stopper  High Medium Low

Section 2: Test Scenario (attach all detailed information used for input)

1. Navigation > Select Function “E”, Pay Period 2, Location 072 <enter>
2. Type “PR” for Select Group <enter>
3. Type LASTNAME, FIRST NAME (of employee) in Starting Name Search. <enter>
4. Type “A” in Action, <tab> to enter Month and Day, <tab> to enter hours and minutes, <tab> to enter budget

code*, <tab> to enter brief description. <enter>

*ABC200HT705

Section 3: Expected Results

EXPECT TO SEE “RECORD ADDED” MESSAGE DISPLAYED IN LOWER LEFT OF SCREEN.

Section 4: Actual Results

Section 5: Test Summary

Were original test results met?  Yes  No Date PDR Submitted:
Were re-test (1) results met?  Yes  No
Were re-test (2) results met?  Yes  No
Tester’s Signature: Date:
Verification of Results- Signature: Date:
User Acceptance/Approval: Date:

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 19

12 Appendix C: Relational Mapping File

Relational Mapping File (RMF)

 The relational mapping file (RMF) is created by the Natural to EGL converter at the same time as

the DDL and DB2/Oracle load control files are created.

 The RMF is used by the ADAExtractor Data Migration tool to help convert the raw ADAULD file

into a DB2/Oracle load file.

 The RMF contains information about the new relational fields (as defined by the Online ADABAS

Normalization process) that are required by the ADAExtractor tool to create the DB2/Oracle load
file correctly.

 The RMF is design to be a portable and simple way to deliver details from the SAR repository to

the customer so they can do the data conversion on-site.

 The RMF, the DDL and the DB2/Oracle load control file can be generated and delivered to the

customer as soon as the normalization is done. This would allow the customer to create the
DB2/Oracle database and perform data conversions early in the migration process.

 Following are some screen shots of the ADAExtractor data conversion:

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 20

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 21

RMEN - NAT2EGL PROCESS GUIDE October 13, 2014

 22

 Here is a sample of what the RMF contains:

-- Relational Mapping File Generated By NatMiner on Mon Jun 26 19:39:43 EDT 2006
-- For Converted FDT FILE_094_DB_001
FDT=FILE_094_DB_001
[tables]
1,COPU94CO
[fields]
AA,1,0,N,NUMBER,Y
AB,1,0,A,VARCHAR2,N
AC,1,0,A,VARCHAR2,N
AD,1,0,A,VARCHAR2,N
AE,1,0,D,DATE,N
AF,1,0,D,DATE,N
AG,1,0,A,VARCHAR2,N
AH,1,0,N,NUMBER,Y
AI,1,0,N,NUMBER,Y
AJ,1,0,N,NUMBER,Y
AK,1,0,N,NUMBER,Y
AL,1,0,N,NUMBER,Y
AM,1,0,A,VARCHAR2,N
AN,1,0,N,NUMBER,Y
AO,1,0,N,NUMBER,Y
AP,1,0,N,NUMBER,Y
AQ,1,0,N,NUMBER,Y
AR,1,0,N,NUMBER,Y
AS,1,0,A,VARCHAR2,N
AT,1,0,N,NUMBER,Y
AU,1,0,N,NUMBER,Y
AV,1,0,A,CHAR,N
AW,1,0,D,DATE,N
AX,1,0,D,DATE,N
AY,1,0,N,NUMBER,Y
AZ,1,0,N,NUMBER,Y
A0,1,0,N,NUMBER,Y
A1,1,0,A,VARCHAR2,N
A2,1,0,N,NUMBER,Y
A3,1,0,A,CHAR,N
A4,1,0,N,NUMBER,Y
A6,1,0,D,DATE,N
A7,1,0,N,NUMBER,Y
A8,1,0,D,DATE,N
A9,1,0,N,NUMBER,Y
BA,1,0,D,DATE,N
BB,1,0,A,VARCHAR2,N
BC,1,0,N,NUMBER,Y
BD,1,0,N,NUMBER,Y
BE,1,0,N,NUMBER,Y
BF,1,0,A,VARCHAR2,N
BG,1,0,A,VARCHAR2,N
BH,1,0,A,VARCHAR2,N
BI,1,0,N,NUMBER,Y
BJ,1,0,N,NUMBER,Y
BK,1,0,N,NUMBER,Y
BL,1,0,N,NUMBER,Y
BM,1,0,N,NUMBER,Y
BN,1,0,A,VARCHAR2,N
BO,1,2,N,NUMBER,Y
BP,1,0,N,NUMBER,Y
BQ,1,0,N,NUMBER,Y
BR,1,0,A,VARCHAR2,N
BS,1,0,N,NUMBER,Y

