
© 2014 FBD ASSOCIATES INC. COPYING OR DISTRIBUTION OF THIS REPORT IS NOT PERMITTED WITHOUT THE
PRIOR WRITTEN CONSENT OF FBD ASSOCIATES INC.

FBD Associates Inc.

ENABLING THE FUTURE

Natural / Adabas

Migration Solutions

JavNat

Natural/Adabas

To

Java/DB2/zOS

 Process Guide

JAVNAT PROCESS GUIDE September 17, 2014

 2

Table of Contents
1 Objective .. 3

2 Collection of Customer Source Code ... 3

3 Parsing and Analysis ... 4

4 Partitioning ... 5

5 Normalization ... 6

6 Source Code Conversion ... 7

6.1 Automated conversion to JavNat ... 7

6.2 Manual Remediation .. 8

7 Data Migration ... 9

8 Application Testing .. 10
8.1.1 Unit test environment ... 11
8.1.2 Acceptance test environment ... 11

8.2 Data Conversion .. 11

8.3 Parallel testing ... 11
8.3.1 Macro level ... 12
8.3.2 Micro level .. 12

8.4 Multi-user testing .. 12

8.5 Problem reporting .. 12

9 Appendix “A”: External Interfaces .. 13

9.1 Batch JCL .. 13

9.2 Work Files .. 13

10 Appendix “B”: Natural2Java Converter .. 14

10.1 Natural2Java Converter .. 14

11 Appendix “C”: Sample of converted JavNat code ... 16

12 Appendix “D”: Sample User Acceptance test script .. 21

JAVNAT PROCESS GUIDE September 17, 2014

 3

1 Objective

This document is intended to provide an understanding of the step-by-step process for migration of a
NATURAL/ADABAS application to a functionally equivalent Java based web application using the FBD
Associates Inc. (FBDA) JavNat tools. These steps are illustrated in Figure 1 and from the beginning to
the completion of the process are:

 Collection of Natural source code and Adabas FDTs

 Natural source code parsing

 Loading the parsed data to a repository

 Analysis and assessment

 Application partitioning

 Adabas FDT normalization and relational schema generation

 Conversion of Natural source code to Java

 Adabas data conversion and migration

 Testing and user acceptance

Figure 1 JavNat Process

2 Collection of Customer Source Code

The process begins with the collection of all the Natural source code from the customer's application
portfolio in SYSTRANS format. The SYSTRANS must include the Adabas Field Definition Tables (FDTs)
as well as the Natural Data Definition Modules (DDMs), Maps, Data Definition Areas (global, local and

JAVNAT PROCESS GUIDE September 17, 2014

 4

parameter data areas), and executable modules (programs, subprograms, subroutines, helproutines).
This can be accomplished using the Software AG ADAREP and SYSTRANS utilities.

To assist in this activity, FBDA will provide special instructions for source code collection. For details
regarding the collection of source code go to the following link:

http://www.fbda.ca/Docs/FBDA%20-
%20Code%20Extraction%20Instructions%20V%202.2%20Mar%2005_03.doc

The SYSTRANS files can be emailed or ftp’d to FBDA for parsing. Where STEPLIBS are used, the
STEPLIB information must be provided.

3 Parsing and Analysis

The FDTs, DDMs, Maps and all other Natural source objects transmitted in the SYSTRANS are parsed,
and the parsed data extracted and loaded into the relational database based Syntax Analysis
Repository (SAR). Initially, an automated analysis of the parsed data is performed to determine the
feasibility of conversion and identify problematic code (e.g.: dynamic code, external calls). Using
FBDA’s Statistical Normalization and Partitioning Tool (SNAP®), detailed application profile
assessment reports (see below) are generated, containing a comprehensive description of the source
code and application details which aid in estimating the size of the migration.

JAVNAT PROCESS GUIDE September 17, 2014

 5

SNAP® is an interactive web-based tool that reads the SAR database and assists a user in performing
a number of functions that support application conversion and data migration.

 View Application Profile Reports including general information such as:

 application metrics
 modules not parsed
 missing objects (executables, ddms, data areas, copy code)
 un-referenced subroutines
 dynamic calls

 View reports showing potential conversion issues

 View source code in HTML format

 Normalize Adabas FDTs based on DDMs

 Create the DDL for schema definition, the control file and SQL for database triggers

 Read Adabas data files (ADAULD) and produce files for relational database loading

The NatMiner component of SNAP® produces comprehensive inventory reports that ensure the
completeness and integrity of the code prior to conversion.

4 Partitioning

Using the SNAP® tool and the DNA reports together with the NATURAL source code and any available
documentation, the application is analyzed and organized into logical units of work (partitions) that
will be tested and delivered incrementally consistent with customer test and production support
resource availability. Partitions will be determined for the most part by functions within the
application. Several functions that are made up of only a few modules may be combined into one
partition while other, more complex functions may be split over more than one partition.

Partitions are designed to follow the normal business procedures. For example, security and support
file maintenance would be likely candidates for the first partition. Subsequent partitions would then
use and build on the files already created and populated.

In order to achieve the highest quality results in partitioning, it is essential that the customer be
involved in this activity from the beginning. The proposed plan will be reviewed, amended as required
and ultimately approved by the customer before work begins.

The source code translation will be implemented in phases with each phase consisting of one or more
of these partitions. As the source code for each partition is translated it will be compiled and subject
to unit level test to confirm functional performance.

JAVNAT PROCESS GUIDE September 17, 2014

 6

5 Normalization

Once the missing modules are accounted for and the information in SAR is deemed to be complete
and timely, the next step is normalization of the FDTs to create a relational schema. The customer
has the option of specifying field and table names that will be used in the creation of the new
schema, as well as some ability to change data types and sizes. While changes may be provided in
any format (Excel, CSV etc.), they are entered into SAR using FBDA’s SNAP® tool.

When normalizing an FDT, the DDM fields are presented side by side with the FDT information in
SNAP®, and can be used as a default for the new name. In the example below, there is only 1 DDM
for the FDT.

Unless the complexity of the FDT-DDM relationship causes a conflict (e.g. 2 DDMs have different
names for the same ADABAS field), the JavNat field and table names generated correspond to the DDM
names as a default. Where an ADABAS field has no corresponding field in a DDM, its name is built
from the Adabas short name. However, the customer has the option of overwriting table and field
names so that the new schema definition will be more meaningful to application developers.

By default, the relational tables will be built from the conversion details stored in SAR, according to
the following mapping rules:

 Each FDT is converted to at least one corresponding relational table in the target DBMS
whose unique key will be the ISN of the original Adabas record. This table will be comprised
of all the fields from the FDT with the exception of Periodic Groups (PEs), Multiple Usage
fields (MUs) and Group fields.

 PEs are normalized, becoming Child tables with Foreign Keys to the parent table.

JAVNAT PROCESS GUIDE September 17, 2014

 7

 Similarly, by default MUs are normalized, and Child Tables created with Foreign Keys to the
Parent Table. Optionally, an MU field may be mapped to a partitioned text field that contains
all occurrences of the MU delimited by a special character, or a separate field might be created
to hold each occurrence of the MU field. (e.g.: ADDRESS_LINE1, ADDRESS_LINE2, etc.)

 Each Superdescriptor (SP) and Subdescriptor (SB) is converted to a physical field in the
corresponding table in the target database. A database trigger is created which maintains the
structure of the SP or SB components when these are modified in the database. Under certain
circumstances, SQL can be used to copy the functionality of the SP/SB, eliminating the need
for a physical field.

 Descriptors become indexes in the new schema.

 Phonetic descriptors will be replaced by database triggers that implement a Soundex
algorithm.

Schema generation is an iterative process involving customer review and input until a satisfactory
schema is agreed upon.

At this point, DDL is generated, including:

 CREATE TABLE, PRIMARY KEY and FOREIGN KEY statements

 CREATE INDEX statements

 SQL scripts to build sub/superdescriptor triggers

 SQL to generate ISN sequence

The generation of the DDL is done online and takes seconds. It can then either be saved for later use,
or copied and pasted directly to create the database tables, indexes and triggers.

6 Source Code Conversion

6.1 Automated conversion to JavNat

Once normalization is completed the source code can be converted. In order to ensure the generation
of the correct DML it is essential that the FDT normalization details be stored in SAR before proceeding.
This is done by clicking on the button Save Relational Data in the last step of normalization when one
is satisfied with the results.

The JavNat source code conversion strategy is based on three key components as follows:

NatLogic Base Classes

The NatLogic base classes are a collection of custom Java methods that implement the Java
equivalent functionality of the Natural language syntax. In general each Natural statement is
mapped to a Java method on a one to one basis. The JavNat methods are designed to give the
converted code a Natural "look and feel."

JAVNAT PROCESS GUIDE September 17, 2014

 8

Support Base Classes

The Support base classes are a collection of custom Java classes to provide the Java equivalent
functionality for certain Natural runtime components and features. Some examples are:

 NatSession - maintains and controls the JavNat runtime environment.

 NatSysVar - manages the system variables such as *DATX and *COUNT.

 NatStackItem - manages items passed on the stack

 NatWorkFile - manages the disk I/O for the Natural Read/Write Workfile statements

 NatDDM - maps View structures to the relational schema.

Translation Engine

A SAR driven tool (Natural2Java Converter) translates each Natural module source code, on a
statement-by-statement basis, to a functionally equivalent Java class using methods of the
NatLogic base class and native Java statements to create Java logic that will execute exactly
as it was executed in the Natural environment. Each Natural source module is converted to a
Java class that extends the NatLogic base class.

The new Java classes corresponding to the Natural program modules use the NatDDM base
classes to generate SQL statements that are executed through JDBC to the relational schema.
Logic is generated to read data from the relational schema and store it back into the Natural
view structure in the same way that Natural functions. This applies to programs, subprograms,
helproutines, maps, LDAs PDAs and GDAs.

Within the support base classes there are methods defined to handle each Natural system
variable. These methods perform the data manipulation necessary to obtain the required
results. For example, a method called sDATN will return the system date in the format
YYYYMMDD.

Appendix B provides a more detailed description of the translation engine operations.

Appendix C shows an example of a NATURAL program and the equivalent JavNat output by
the converter.

6.2 Manual Remediation

The converted JavNat programs, subprograms and subroutines will sometimes require some manual
remediation in order to compile and function as designed. The NATURAL ’REINPUT’ statement, as well
as a handful of other situations will always require some manual resolution. The manipulations
required to ensure a successful compilation and functioning of these statements are known and
documented. This effort will vary depending on the application, and our experience has been that on
average this may take 15 minutes per module.

The converted JavNat versions of maps, ddms and data areas compile with no further changes.

JAVNAT PROCESS GUIDE September 17, 2014

 9

7 Data Migration

JavNat also provides tool-supported data migration from Adabas production files to the relational
tables. An automated process that can be managed using NatMiner® or independently, combines data
from SAR with the newly created relational schema to enable the following:

 Creation of a relational based data staging area derived from the transformed Adabas schema.

 Population of the staging area with data from the Adabas files to facilitate subsequent data

validation, data type mapping and data warehousing activities. The Adabas data will be extracted
from data files produce using standard Adabas utilities.

 Generation of control files based on the new relational schema, that can be used to create files

for bulk loading of the Adabas data into the production relational tables.

The data migration process can be repeated as many times as needed. Data migration will almost
always require some degree of data validation and mapping. JavNat can provide automated support
for activities such as:

 Validation that a field specified as a date in Adabas and stored as an A6 actually contains valid

YYMMDD occurrences and uses lo-values or blanks as a null value.

 Validation of implied foreign key existence and constraint checks.

 Mapping an Adabas A6 date field to a relational date field with blank occurrences replaced with

NULL.

 Mapping an Adabas SSN representation to an appropriate relational representation.

 Expansion or replacement of state, region or status codes.

Performance

All application platforms and databases have specific issues when it comes to performance and
customization. Particular performance issues that appear during testing can be tuned using a number
of methods:

With the object-oriented nature of Java, cosmetic and functional changes can be made to many of the
JavNat classes to customize the application where needed.

Customers are provided a complete set of source code to allow for in-house customization or can
contract for this service on an as required basis. Customization methods might include:

 DBAs can tune the new relational database using such techniques as adding or removing database

indexes or may involve changes to the new schema that requires an automated re-conversion of
the application.

 Changing the functionality of a particular JavNat I/O method for better performance.

 Adding new JavNat I/O methods to handle specific database access situations.

JAVNAT PROCESS GUIDE September 17, 2014

 10

 Replacing JavNat methods with native Java JDBC calls where needed.

 Changing or adding JavNat methods to improve logic.

 Replacing old Natural-like business logic with new object oriented business rule concepts.

 Re-coding sections in native Java statements.
Logic Performance

8 Application Testing

The JavNat conversion process is based on a strict statement to statement conversion approach. As a
consequence there is a one-to-one correspondence between converted JavNat code and the NATURAL
application. The logic and business rules are identical to the original application, and the user interface
has the same appearance unless it has been customized at the user’s request.

The JavNat conversion process simplifies testing in that testing can be done in parallel with the existing
application using a NATURAL test environment. Existing test scripts can be applied without change.
Database updates and reports can be compared to ensure that the converted application is functioning
as required.

The screen image shown below is from a JavNat application. It illustrates the similarity to a NATURAL
3270 screen map.

It is recommended that 2 environments be set up for testing in both the JavNat and the NATURAL
environment as follows:

JAVNAT PROCESS GUIDE September 17, 2014

 11

8.1.1 Unit test environment

This environment will not be too closely controlled. It is for unit testing and since the testers may not
be completely familiar with the application, the data entered may not always make perfect sense. The
purpose of these tests is to determine whether each screen seems to function as it should, and it is
not intended for system testing.

8.1.2 Acceptance test environment

This environment will be strictly controlled and testing will follow scripts which take the user through
a logical cycle(s) of processing including both batch and online. When ‘parallel’ testing is discussed
below it is with this environment in mind.

Since the snapshot of the data will most likely be out of date, the system date can be easily set in the
JavNat environment to correspond to the date of extraction. Of course this must also be done in the
NATURAL environment.

See Appendix “D” for a sample test script.

8.2 Data Conversion

Verification of the data conversion would involve doing an automated comparison between the
converted relational tables and the original data.

To accomplish this, the client would provide a dump (flat file) of the data prior to conversion. To avoid
the possibility of interim change, this should accompany the ADAULD when it is provided for testing.
A dump of the converted data in the same format would be obtained using FBDA tools. These two files
can then be compared using standard ‘diff’ software and the results reviewed.

8.3 Parallel testing

The ADABAS data supplied for testing is loaded into a NATURAL test environment. The converted
data is loaded into relational tables. Using 2 terminals (or 2 screens on the same terminal) users
perform the same functions in both systems and compare screens. For parallel testing it is essential
that scripts be prepared and followed rigorously.

These tests will follow the process from beginning to end, including such things as rollover, month
end, year end and any other process cycles, batch reports and any external interfaces there may be. It
should exercise every par of the system.

Verification should be done through a regular comparison of:

 database contents

 printed outputs (reports)

 output (work) files produced

JAVNAT PROCESS GUIDE September 17, 2014

 12

8.3.1 Macro level

At the end of a day (or cycle or whatever unit is desirable) of testing, the data comparison should be
done between the ADABAS and relational files and any other outputs produced.

8.3.2 Micro level

Note should be taken of every field that appears on a screen. For example, attention should be given
to:

 date and time formats

 negative numbers

 specials editing of fields (edit masks such as ‘XXX’-‘XX’-‘XXX’)

 leading zeros

 trailing blanks

 decimal places

 upper/lower case

 functioning of all PF keys

 error messages

 position of cursor on entering screen

 position of cursor when validation error occurs

8.4 Multi-user testing

Once unit testing has been done and the initial system testing has flushed out most of the bugs, the
application should be subjected to multiple users working simultaneously. As early as possible tests
that involve 2 or more users at a time should be performed. This type of testing should be scheduled
as partitions are rolled out, not deferred until the project is completed.

8.5 Problem reporting

It is the responsibility of the tester to report all problems. Obviously anything that crashes the system
or that is blatantly wrong must be reported as a bug. Apart from that, when odd behavior is noted, it
should first be established that this behavior is different from the existing NATURAL application.

 If it is different, then report it as a bug and explain what the correct behavior should be.

 If it is the same but still felt to be a ‘bug’ then report it as an enhancement and describe what
the ‘correct’ behavior should be.

 Each problem (bug, enhancement, issue) reported should be assigned a priority.

JAVNAT PROCESS GUIDE September 17, 2014

 13

 Each problem reported should be assigned a severity.

It is the responsibility of FBDA to respond with:

 An estimate of the time it will take to address the problem

 A description of the module(s) or other software affected

 A resolution to the problem

As long as there are any unresolved problems, it is recommended that a weekly meeting be held with
the specific purpose of exploring these problems, to ensure that the issues are understood by all
parties.

9 Appendix “A”: External Interfaces

9.1 JZOS for Batch JCL

IBM has extended the z/OS Java products to include the JZOS Batch Launcher and Toolkit.
JZOS is a set of tools that enhances the ability for z/OS Java applications to run in a
traditional batch environment and/or access z/OS system services.

The enhancements include a native launcher for running Java applications directly as batch
jobs or started tasks, and a set of Java classes that make access to traditional z/OS data and
key system services directly available from Java applications. Additional system services include
console communication, multiline WTO (write to operator), and return code passing capability

A major advantage of the Java/JZOS/zOS solution is that the existing JCL requires only a very
minor change as follows:

- the JCL proc presently being used to execute the Natural batch steps would be
replaced by a new JCL proc that will execute Java using JZOS.

- this new proc would use the same DD names are the Natural batch proc and the
new proc could be named closely to the old name (NATBATCH to JNATBATCH for
example).

9.2 Work Files

JZOS provides equivalent access to work files on the zOS system as was the case for Natural/zOS.

JAVNAT PROCESS GUIDE September 17, 2014

 14

10 Appendix “B”: Natural2Java Converter

10.1 Natural2Java Converter

This component is used to convert all the source code (ddms, data areas, maps, executables) into
“JavNat®”. Section 6.1 above has a summary description of the converter design philosophy. This
appendix provides a more detailed description of the converter operations.

The converter is run using a user interface that allows its user a number of options.

 Ignore Comments: The default is to preserve all comments in conversion. When checked, no

comments are converted.

 Comment Our Calls: When checked, all Fetch and Callnat statements are commented out in the

converted code. For example:

//FBDA-BLOCKStackTop().Add($PASSAREA_1).Add($PASSAREA_2).Add($PASSAREA_3);
//FBDA-BLOCKFetch(new pPROG1());

This is a consideration when compiling and testing. Until the program “PROG1” is successfully
compiled, no module that calls it will compile. A strategy is to comment out these calls, and
uncomment them as modules are compiled and ready for testing.

 Natural 1 Code: Used to convert Reporting mode code.

JAVNAT PROCESS GUIDE September 17, 2014

 15

In addition to these ‘global’ settings, there are more options to choose from in the Module Selection
window. These are self-explanatory.

Modules can be converted one at a time or as a block. When an issues is encountered (a statement
not yet handled, for example), details are reported in a “Conversion Log” window.

Below is an example of a converted module.

JAVNAT PROCESS GUIDE September 17, 2014

 16

11 Appendix “C”: Sample of converted JavNat code

NATURAL

JavNat

** PROGRAM NUMBER: SF050P
** PROGRAM NAME : S.A.M.S. MAIN MENU PROGRAM
** DATE CREATED : 8/01/98
** PROGRAMMER : JOHN SMITH
** DESCRIPTION : THIS IS THE MAIN MENU PROGRAM FOR THE
** SCHOOL ACCOUNTING SYSTEM.
**

DEFINE DATA
GLOBAL USING SFGDA01
LOCAL
01 SCHCTRL VIEW OF SAMS-SCHOOL-CONTROL
 02 SC-SCHOOL-NUMBER
 02 SC-CURRENT-MONTH
 02 SC-CURRENT-YEAR
 02 SC-SCHOOL-TYPE
 02 SC-BEGIN-FLAG
 02 SC-RECEIPT-NUMBER
 02 SC-CHECK-NUMBER
1 USER VIEW OF STF-USER-SECURITY
 2 ID-CODE
 2 DESCRIPTION
**
1 LOCATION VIEW OF LOCATION-ADABAS
 2 LOCATION-CODE
 2 LOCATION-NAME
1 #USER-KEY (A13)
1 #DESCRIPTION (A140)
1 REDEFINE #DESCRIPTION
 2 #JUNK(A3)
 2 #FALL-INDICATOR(A1)
1 REDEFINE #DESCRIPTION
 2 #NAME(A25)
 2 #LOCATION(A3)
1 #PROGRAM (A8)
1 #HEADER1 (A60)
1 #HEADER2 (A58)
1 #SCHOOL-CODE (A3)
1 #SCHOOL-NAME (A30)
1 #CNTL (C)
1 #SELECTION (A2)
1 REDEFINE #SELECTION
 2 #PERIOD (A1)
1 CDGETDCA
 2 #DIRECT-COMMAND (A60)
END-DEFINE

SET CONTROL 'MB'
SET CONTROL 'YN'
SET CONTROL 'YB'
SET KEY ALL
SET KEY
PF1 = HELP

package com.fbdacity.sams.SAMS;

import fbda.javnat.*;

/**
 * JavNat implementation of PROGRAM SF050P from library SAMS.
 *
 * <p><pre>
 *
//**
* //** PROGRAM NUMBER: SF050P
//** PROGRAM NAME : S.A.M.S. MAIN MENU PROGRAM
//** DATE CREATED : 8/01/98
//** PROGRAMMER : JOHN SMITH
//** DESCRIPTION : THIS IS THE MAIN MENU PROGRAM FOR THE
//** SCHOOL ACCOUNTING SYSTEM.
//**
//**
* </pre>
**/

public class SF050P extends NatLogic
{
 public void Run()
 {
 //Define Data
 GlobalUsing(SFGDA01);
 Local();
 View(1,SCHCTRL,new
com.fbdacity.sams.DDM.SAMS_SCHOOL_CONTROL());
 Decl(2,SCHCTRL.SC_SCHOOL_NUMBER,"A",3);
 Decl(2,SCHCTRL.SC_CURRENT_MONTH,"A",2);
 Decl(2,SCHCTRL.SC_CURRENT_YEAR,"A",4);
 Decl(2,SCHCTRL.SC_SCHOOL_TYPE,"A",1);
 Decl(2,SCHCTRL.SC_BEGIN_FLAG,"A",1);
 Decl(2,SCHCTRL.SC_RECEIPT_NUMBER,"N",6);
 Decl(2,SCHCTRL.SC_CHECK_NUMBER,"N",6);
 View(1,USER,new
com.fbdacity.sams.DDM.STF_USER_SECURITY());
 Decl(2,USER.ID_CODE,"A",13);
 Decl(2,USER.DESCRIPTION,"A",140);
 View(1,LOCATION,new
com.fbdacity.sams.DDM.LOCATION_ADABAS());
 Decl(2,LOCATION.LOCATION_CODE,"A",4);
 Decl(2,LOCATION.LOCATION_NAME,"A",30);
 Decl(1,$USER_KEY,"A",13);
 Decl(1,$DESCRIPTION,"A",140);
 Redf(1,$DESCRIPTION);
 Decl(2,$DESCRIPTION.$JUNK,"A",3);
 Decl(2,$DESCRIPTION.$FALL_INDICATOR,"A",1);
 Redf(1,$DESCRIPTION);
 Decl(2,$DESCRIPTION.$NAME,"A",25);
 Decl(2,$DESCRIPTION.$LOCATION,"A",3);
 Decl(1,$PROGRAM,"A",8);
 // NOT USED Decl(1,$HEADER1,"A",60);
 // NOT USED Decl(1,$HEADER2,"A",58);
 Decl(1,$SCHOOL_CODE,"A",3);
 Decl(1,$SCHOOL_NAME,"A",30);
 Decl(1,$CNTL,"C");
 Decl(1,$SELECTION,"A",2);
 Redf(1,$SELECTION);
 Decl(2,$SELECTION.$PERIOD,"A",1);
 // NOT USED Decl(1,CDGETDCA);
 // NOT USED Decl(2,CDGETDCA.$DIRECT_COMMAND,"A",60);
 //End-Define
 SetControl("MB");
 SetControl("YN");
 SetControl("YB");
 SetKeyAll();
 PF1.setKeyHelp();

JAVNAT PROCESS GUIDE September 17, 2014

 17

 ENTR NAMED 'ENTER'
 PF3 NAMED 'QUIT'
MOVE *PROGRAM TO #PROGRAM
MOVE *USER TO #USER-KEY
FIND IN FILE USER WITH ID-CODE = #USER-KEY

 MOVE DESCRIPTION TO #DESCRIPTION
END-FIND

FIND IN LOCATION WITH LOCATION-CODE = ##SCHOOL

 MOVE LOCATION-NAME TO #SCHOOL-NAME
 MOVE LOCATION-NAME TO ##SCHOOL-NAME
END-FIND

IF ##USER-LOCATION NE '509' AND *USER NE 'SAMSADM'
 MOVE (AD=P CD=BL) TO #CNTL
END-IF

RESET ##MSG
REPEAT
 MOVE ##SCHOOL TO #SCHOOL-CODE
 MOVE ##SCHOOL-NAME TO #SCHOOL-NAME
 RESET #SELECTION

 INPUT WITH TEXT ##MSG MARK *#SELECTION USING MAP
'SF050M'
 MOVE ' ' TO ##MSG
/*

 IF *PF-KEY = 'PF3' TERMINATE END-IF
/*

 IF #PERIOD = '.'
 FETCH 'SF050P'
 END-IF

/*
 FIND IN LOCATION WITH LOCATION-CODE = #SCHOOL-CODE

 IF NO RECORDS FOUND
 COMPRESS 'LOCATION' #SCHOOL-CODE
 '-IS NOT ON THE LOCATION FILE' INTO ##MSG
 REINPUT FULL WITH TEXT ##MSG
 END-NOREC

 MOVE LOCATION-NAME TO #SCHOOL-NAME
 MOVE LOCATION-NAME TO ##SCHOOL-NAME
 MOVE #SCHOOL-CODE TO ##SCHOOL
 END-FIND
/*

 DECIDE ON FIRST #SELECTION

 VALUE 'ET'
 PERFORM CONTROL

 ENTR.setNamed("ENTER");
 PF3.setNamed("QUIT");
 $PROGRAM.setValue(sPROGRAM());
 $USER_KEY.setValue(sUSER());
 Find(USER)
 .With("ID_CODE = '" + $USER_KEY.getSQLValue() + "'")
 .Execute();
 while(Next(USER))
 {
 $DESCRIPTION.setValue(USER.DESCRIPTION);
 } //FIND USER

 Find(LOCATION)
 .With("LOCATION_CODE = '" +
SFGDA01.MPS.$$SCHOOL.getSQLValue() + "'")
 .Execute();
 while(Next(LOCATION))
 {
 $SCHOOL_NAME.setValue(LOCATION.LOCATION_NAME);

SFGDA01.MPS.$$SCHOOL_NAME.setValue(LOCATION.LOCATION_NAME);
 } //FIND LOCATION

 if(SFGDA01.MPS.$$USER_LOCATION.ne("509") &&
sUSER().ne("SAMSADM"))
 {
 $CNTL.setValue(CV().AD("P").CD(BL));
 }
 SFGDA01.MSG_INFO.$$MSG.Reset();
 do
 {
 $SCHOOL_CODE.setValue(SFGDA01.MPS.$$SCHOOL);
 $SCHOOL_NAME.setValue(SFGDA01.MPS.$$SCHOOL_NAME);
 $SELECTION.Reset();
 REINPUT_LOOP0: do { //Beginning of Reinput Loop

InputUsingMap(SF050M).WithText(SFGDA01.MSG_INFO.$$MSG).Mark($S
ELECTION).Show();
 SFGDA01.MSG_INFO.$$MSG.setValue(" ");
 //
 if(sPF_KEY().eq("PF3"))
 {
 Terminate(0);
 }
 //
 if($SELECTION.$PERIOD.eq("."))
 {
 Stack().ReleaseStack();
 Fetch(new SF050P());
 }
 //
 Find(LOCATION)
 .With("LOCATION_CODE = '" +
$SCHOOL_CODE.getSQLValue() + "'")
 .Execute();
 while(Next(LOCATION) || NoRecordsFoundPending(LOCATION))
 {
 if(NoRecordsFound(LOCATION))
 {
 Compress().Comp(
 "LOCATION").Comp(
 $SCHOOL_CODE).Comp(
 "-IS NOT ON THE LOCATION FILE")
 .Into(SFGDA01.MSG_INFO.$$MSG);
 Reinput(SFGDA01.MSG_INFO.$$MSG).Full();
 continue REINPUT_LOOP0; //Reinput Support
 }
 $SCHOOL_NAME.setValue(LOCATION.LOCATION_NAME);

SFGDA01.MPS.$$SCHOOL_NAME.setValue(LOCATION.LOCATION_NAME);
 SFGDA01.MPS.$$SCHOOL.setValue($SCHOOL_CODE);
 } //FIND LOCATION

 //
 // Decide On First
 {
 boolean Any79 = false;
 if($SELECTION.eq("ET"))
 {

JAVNAT PROCESS GUIDE September 17, 2014

 18

 FETCH RETURN 'SF051P'

 VALUE 'QA'
 PERFORM CONTROL
 FETCH RETURN 'SF052P'

 VALUE 'FM'
 FETCH RETURN 'SF053P'

 VALUE 'FD'

 IF ##USER-LOCATION NE '509' AND *USER NE ‘SAMSADM'
 REINPUT 'THIS SELECTION IS NOT AVAILABLE TO YOUR
LOCATION'
 MARK *#SELECTION
 ELSE
 FETCH RETURN 'SF060P'
 END-IF

 VALUE 'PR'
 PERFORM CONTROL
 FETCH RETURN 'SF054P'

 VALUE 'CC'
 PERFORM CONTROL
 FETCH RETURN 'SF055P'

 NONE
 REINPUT FULL 'VALID SELECTION CODE MUST BE ENTERED.'
 MARK *#SELECTION
 END-DECIDE

END-REPEAT

DEFINE SUBROUTINE CONTROL

IF #SCHOOL-CODE < '500'
 F1.
 FIND SCHCTRL WITH SC-SCHOOL-NUMBER = #SCHOOL-CODE

 IF NO RECORDS FOUND

 Any79 = true;
 CONTROL();
 if(ReinputPending()) continue REINPUT_LOOP0; //FBDA
Subroutine CONTROL Contains REINPUT but no INPUT
 FetchReturn(new SF051P());
 }
 else if($SELECTION.eq("QA"))
 {
 Any79 = true;
 CONTROL();
 if(ReinputPending()) continue REINPUT_LOOP0; //FBDA
Subroutine CONTROL Contains REINPUT but no INPUT
 FetchReturn(new SF052P());
 }
 else if($SELECTION.eq("FM"))
 {
 Any79 = true;
 FetchReturn(new SF053P());
 }
 else if($SELECTION.eq("FD"))
 {
 Any79 = true;
 if(SFGDA01.MPS.$$USER_LOCATION.ne("509") &&
sUSER().ne("SAMSADM"))
 {
 Reinput("THIS SELECTION IS NOT AVAILABLE TO YOUR
LOCATION").Mark($SELECTION);
 continue REINPUT_LOOP0; //Reinput Support
 }
 else
 {
 FetchReturn(new SF060P());
 }
 }
 else if($SELECTION.eq("PR"))
 {
 Any79 = true;
 CONTROL();
 if(ReinputPending()) continue REINPUT_LOOP0; //FBDA
Subroutine CONTROL Contains REINPUT but no INPUT
 FetchReturn(new SF054P());
 }
 else if($SELECTION.eq("CC"))
 {
 Any79 = true;
 CONTROL();
 if(ReinputPending()) continue REINPUT_LOOP0; //FBDA
Subroutine CONTROL Contains REINPUT but no INPUT
 FetchReturn(new SF055P());
 }
 if(!Any79)
 {
 Reinput("VALID SELECTION CODE MUST BE
ENTERED.").Mark($SELECTION).Full();
 continue REINPUT_LOOP0; //Reinput Support
 }
 }
 break; } while(true); // End of REINPUT_LOOP0
 } while(true);
 } /****************************** End Main
********************/

//*************************
 /**
 * This method...
 **/
 private void CONTROL()
 {
 //*************************
 if($SCHOOL_CODE.lt("500"))
 {
 Find(SCHCTRL)
 .With("SC_SCHOOL_NUMBER = '" +
$SCHOOL_CODE.getSQLValue() + "'")
 .Execute();
 F1:
 while(Next(SCHCTRL) || NoRecordsFoundPending(SCHCTRL))
 {
 if(NoRecordsFound(SCHCTRL))

JAVNAT PROCESS GUIDE September 17, 2014

 19

 COMPRESS 'NO SCHOOL CONTROL RECORD FOUND FOR
LOCATION -'
** #SCHOOL-CODE '- PERFORM START-UP' INTO ##MSG
 #SCHOOL-CODE '-' #SCHOOL-NAME INTO ##MSG
 REINPUT FULL WITH TEXT ##MSG
 END-NOREC
 END-FIND
END-IF
END-SUBROUTINE /* CONTROL
END

 {
 Compress().Comp(
 "NO SCHOOL CONTROL RECORD FOUND FOR LOCATION -
").Comp(
 $SCHOOL_CODE).Comp(
 "-").Comp(
 $SCHOOL_NAME)
 .Into(SFGDA01.MSG_INFO.$$MSG);
 //** #SCHOOL-CODE '- PERFORM START-UP' INTO ##MSG
 Reinput(SFGDA01.MSG_INFO.$$MSG).Full();
 return;
 }
 } //FIND SCHCTRL
 }
} // End Subroutine CONTROL

 //Data Area and Map Declarations
 SFGDA01 SFGDA01;
 SF050M SF050M = new SF050M();

 public void Initialize()
 {
 SFGDA01 = (SFGDA01) ActiveGlobal(new SFGDA01());

 //AIV Declaration and Registration

 //Undeclared Variables

 //Map References
 setReference($CNTL,SF050M.$CNTL);
 setReference($DESCRIPTION.$NAME,SF050M.$NAME);
 setReference($PROGRAM,SF050M.$PROGRAM);
 setReference($SCHOOL_CODE,SF050M.$SCHOOL_CODE);
 setReference($SCHOOL_NAME,SF050M.$SCHOOL_NAME);
 setReference($SELECTION,SF050M.$SELECTION);
 }

 //Local NatVar Declarations
 private SCHCTRL SCHCTRL = new SCHCTRL("SCHCTRL");
 private class SCHCTRL extends NatView {
 private SCHCTRL(String variableName) { super(variableName);
}
 private NatVar SC_SCHOOL_NUMBER = new NatVar("SC-SCHOOL-
NUMBER");
 private NatVar SC_CURRENT_MONTH = new NatVar("SC-CURRENT-
MONTH");
 private NatVar SC_CURRENT_YEAR = new NatVar("SC-CURRENT-
YEAR");
 private NatVar SC_SCHOOL_TYPE = new NatVar("SC-SCHOOL-
TYPE");
 private NatVar SC_BEGIN_FLAG = new NatVar("SC-BEGIN-
FLAG");
 private NatVar SC_RECEIPT_NUMBER = new NatVar("SC-RECEIPT-
NUMBER");
 private NatVar SC_CHECK_NUMBER = new NatVar("SC-CHECK-
NUMBER");
 }
 private USER USER = new USER("USER");
 private class USER extends NatView {
 private USER(String variableName) { super(variableName); }
 private NatVar ID_CODE = new NatVar("ID-CODE");
 private NatVar DESCRIPTION = new NatVar("DESCRIPTION");
 }
 private LOCATION LOCATION = new LOCATION("LOCATION");
 private class LOCATION extends NatView {
 private LOCATION(String variableName) { super(variableName);
}
 private NatVar LOCATION_CODE = new NatVar("LOCATION-
CODE");
 private NatVar LOCATION_NAME = new NatVar("LOCATION-
NAME");
 }
 private NatVar $USER_KEY = new NatVar("#USER-KEY");
 private $DESCRIPTION $DESCRIPTION = new
$DESCRIPTION("#DESCRIPTION");
 private class $DESCRIPTION extends NatVar {
 private $DESCRIPTION(String variableName) {
super(variableName); }
 private NatVar $JUNK = new NatVar("#JUNK");

JAVNAT PROCESS GUIDE September 17, 2014

 20

 private NatVar $FALL_INDICATOR = new NatVar("#FALL-
INDICATOR");
 private NatVar $NAME = new NatVar("#NAME");
 private NatVar $LOCATION = new NatVar("#LOCATION");
 }
 private NatVar $PROGRAM = new NatVar("#PROGRAM");
 private NatVar $SCHOOL_CODE = new NatVar("#SCHOOL-CODE");
 private NatVar $SCHOOL_NAME = new NatVar("#SCHOOL-NAME");
 private NatVar $CNTL = new NatVar("#CNTL");
 private $SELECTION $SELECTION = new
$SELECTION("#SELECTION");
 private class $SELECTION extends NatVar {
 private $SELECTION(String variableName) {
super(variableName); }
 private NatVar $PERIOD = new NatVar("#PERIOD");
 }
}

JAVNAT PROCESS GUIDE September 17, 2014

 21

12 Appendix “D”: Sample User Acceptance test script

Section 1: General Information

Primary User’s Name: Alfred E. Newman Test Case ID #:
User’s Extension #: 763-5462 Tester’s Name:
Origin: Payroll

Other
New Script
Addendum to: #_____________
Related to: #_____________

Action to be Tested: Entry of extra time for principal. Original Test Date: / /
Department Name: Retest (1) Date: / /
Department ID: Retest (2) Date: / /
 Test Priority  Show-stopper  High Medium Low

Section 2: Test Scenario (attach all detailed information used for input)

1. Navigation > Select Function “E”, Pay Period 2, Location 072 <enter>
2. Type “PR” for Select Group <enter>
3. Type LASTNAME, FIRST NAME (of employee) in Starting Name Search. <enter>
4. Type “A” in Action, <tab> to enter Month and Day, <tab> to enter hours and minutes, <tab> to enter budget

code*, <tab> to enter brief description. <enter>

*ABC200HT705

Section 3: Expected Results

EXPECT TO SEE “RECORD ADDED” MESSAGE DISPLAYED IN LOWER LEFT OF SCREEN.

Section 4: Actual Results

Section 5: Test Summary

Were original test results met?  Yes  No Date PDR Submitted:
Were re-test (1) results met?  Yes  No
Were re-test (2) results met?  Yes  No
Tester’s Signature: Date:
Verification of Results- Signature: Date:
User Acceptance/Approval: Date:

